Improved Synthesis and Electronic Structure of the 19- and 20-Electron Complexes $[Fe(\eta^6 - C_6Me_6)_2]^{n+}$, $n = 1.0^1$

Pascal Michaud,^{a,b} Jean-Pierre Mariot,^b François Varret,^b and Didier Astruc^a

a Laboratoire de Chimie des Organométalliques, ERA n° 477, Université de Rennes, 35042 Rennes Cedex, *France*

b Groupe de Physique et Chimie du Solide, ERA n° 682, Université du Maine, 72017 Le Mans Cedex, France

The 19- and 20-electron complexes $[Fe(\eta^6 - C_6Me_6)_2]^n + (n = 1,0)$ are best synthesized by Na/Hg reduction of $[Fe(\eta^6-C_6Me_6)_2]^2$ ⁺ $[PF_6^-]_2$; the extremely negative value of the quadrupole splitting for $[Fe(\eta^6-C_6Me_6)_2]$, comparison of Mössbauer parameters of $[Fe(\eta^6 - C_6Me_6)_2]^n$ ($n = 0.1,2$), and the temperature dependence of the quadrupole splitting for $[Fe(\eta^6 - C_6Me_6)_2]^+$ indicate high metal character for the antibonding e_1^* orbital and rhombic distortion of the Jahn-Teller-active Fe^I complex.

The investigation of neutral, electron-rich organometallics, especially of metal sandwiches which exhibit several oxidation states, is of interest both in studies of the stoicheiometric² and catalytic3 activation of small molecules by electron transfer and in the search for non-pairwise organometallic mechanisms.⁴ Whereas 19-electron complexes are now well characterized, $5,6$ the only stable 20-electron complex known is nickelocene⁷ (and its methylated derivatives^{7e}) and this is not very electron-rich.^{7d} Another interesting family is that of the littlestudied 19- and 20-electron complexes $[Fe(\eta^6-C_6Me_6)]^{n+}$, $n=$ $1,0,8$ for which three oxidation states are reversibly interrelated $\{n = 2 \rightleftharpoons n = 1 \}$ $[E_{1/2} = -0.5 \text{ V}$ *vs.* saturated calomel electrode (S.C.E.)]; $n = 1 \Rightarrow n - 0$ ($E_{1/2} = -1.37$ V *vs.* S.C.E.)).^{8d} However, both complexes are accessible in only a few percent yield by the original Fischer syntheses.^{8a} Weber and Brintzinger^{8c} have reported ligand exchange reactions and an

Figure 1. Schematic representation of the d-orbitals in the molecular orbital diagram for $[Fe(C_6Me_6)_2]^+, (1)^+.$

[Fe(
$$
\eta^6
$$
-C₆Me₆)]ⁿ⁺
(1) $n = 0$
(1)⁺ $n = 1$

improved synthesis of $[Fe(\eta^6-C_6Me_6)_2]$, (1) using naphthyl sodium, but naphthalene is difficult to remove from this thermally unstable 20-electron complex.

We report here convenient high-yield syntheses of $(1)^+$ [PF₆⁻] and **(1)** and Mossbauer data for **(I)'** and **(1)** which provide an easy way to determine the structures and purities of these complexes together with an insight into their electronic structures $(Figure 1)$.

Na/Hg reduction of dry, microcrystalline $(1)^{2+}[PF_{6}^{-}]_{2}$ suspended in 1,2-dimethoxyethane (DME) under N_2 proceeds cleanly to **(1)** in 1 h at 20 *"C.* Removal of the solvent *in vncuo,* followed by extraction with toluene and precipitation by pentane at -90 °C, gives an 82% yield of pure **(1)** which can be recrystallized in toluene-pentane at -21 °C to give large black plates in 76% yield. **If** the Na/Hg reduction is stopped after 30—40 min, deep-purple microcrystalline **(1)**⁺[PF₆⁻] can be isolated in *85%* crude yield after removing the solvent *in vncuo,* extraction with acetone, and rapid precipitation with ether [salts of $(1)^+$ are unstable in solution]. The purities of **(1)** and $(1)^{+}[PF_{6}^{-}]$ may be verified by the observation of single Mössbauer quadrupole doublets in the spectra. The Mössbauer spectrum of thermally decomposed **(1)** indicates the formation of iron metal. The Mössbauer parameters of $(1)^+$ - $[PF_6^-]$ are typical of an Fe^t sandwich.⁶ The quadrupole splitting **(Q.S.)** value at 293 K (0.4 mm s^{-1}) is 1.6 mm s⁻¹ lower than that⁹ of $(1)^{2+}[PF_6^-]_2$ (2 mm s^{-1}) indicating high metal character for the singly occupied antibonding e_{1g} ^{*} orbital¹⁰ (*ca.* 80 $\frac{\%}{\%}$, Figure 1). **If** this is also true for **(1)** (note that the ruthenium analogue is an IS-electron complex with one partly decoordinated η^4 -arene)¹¹ it would imply an extremely negative **Q.S.** value. Unlike **(l)+, (1)** has a temperature-invariant **Q.S.,** consistent with two unpaired electrons on e_1^* . The absolute value of $\overline{O.S.}$ is 1.45 mm s⁻¹ but its sign must be obtained by examination of either the relative intensities and positions of the lines in the Mössbauer spectra of a single crystal or the splitting into a doublet and triplet of the absorptions in the spectrum of a powder sample in a magnetic field 12 (Figure 2). Both experiments lead to the conclusion that the **Q.S.** is negative $(-1.45 \text{ mm s}^{-1})$, indeed by far the most negative value ever found for a neutral iron complex. Thus the metal

Figure 2. Mössbauer spectra of $[Fe(C_6Me_6)_2]$, (1) at 100 **K** (a) without applied magnetic field. and (b) under a 60 kG magnetic field. Complex **(I)** was diluted in hexane to avoid texture effects occuring in powdered samples. Fitted parameters: $\text{L.S.} = 1.06 \text{ mm}$ s⁻¹ *vs.* Fe, Q.S. $- -1.45 \text{ mm}$ s⁻¹. (a) Splitting into a doublet (left line) and into a triplet (right line) indicating a negative sign for **Q.S.** (ref. 12), (b) a hyperfine field due to the paramagnetism of **(1)** *(S* = 1) is observed below 100 **K.**

Figure 3. Temperature dependence of the quadrupole splitting for (1) $[PF_6^-]$. **I.S.** $= 0.82$ mm s⁻¹ *vs.* Fe at 300 **K**. For comparison, the parameters of $(1)^2$ $[PF_6^-]_2$ are **I.S.** $= 0.56$ mm s⁻¹ and Q.S. $=$ 2 mm s^{-1} at 300 K, close to literature values (ref. 9).

character of e_{1g} ^{*} in **(1)** is still higher *(ca.* 90%) than in **(1)**⁺. Complex **(I)+** is temperature dependent (Figure 3) and the curves $Q.S. = f(T)$ vary dramatically with the nature of the counter-anion which indicates that the molecular electronic structure is extremely dependent on the lattice. The asymmetry of theexternal potential induces distortions of the Jahn-Telleractive Fe¹ sandwiches,^{6c} e.g. the splitting and population of

the Kramer's doublet are strongly influenced by the counteranion lattice. Since these variation of **Q.S.** do not fit a simple law of thermal population {contrary to $[(C_5R_5)Fe^T(\eta^6 (C_6R_6)$ ^{[6a, b, 13} complexes with R = H or Me^{2},¹⁵ the phenomena are complex and probably involve several phases and phase transitions.

We thank the C.N.R.S. for financial support and the D.G.R.S.T. for a predoctoral grant to P.M.

Received, 19th July 1982; Coni. 832

References

- For Part 8 of the Series 'Organometallic Electron-Reservoirs,' see J.-R. Hamon, J. **Y.** Saillard, A. Le Beuze, M. McGlinchey, and D. A5truc, *J. Am. Chem. Soc.,* in the press.
- 2 D. Astruc, E. Román, J.-R. Hamon, and P. Batail, *J. Am. Cheni. Soc.,* 1979, **101,** 2240; **J.-R.** Hamon, D. Astruc, E. Romin, P. Batail, and J. J. Mayerle, *ibid.,* 1981, **103,** 2431; J.-R. Hamon, D. Astruc, E. Romin, and **P.** Michaud, *ibid.,* **p.** 7502; P. Michaud and D. Astruc, unpublished results.
- A. Buet, A. Darchen, and C. Moinet, *J. Chem. Soc., Chem.* Commun., 1979, 447; E. Román, R. Dabard, C. Moinet, and D. Astruc, *Tetrahedron Left.,* 1979, 1433.
- **P.** Michaud, D. Astruc, and J. H. Ammeter, *J. Am. Chem. Soc.,* 1982, **104,** 3755; P. Michaud and D. Astruc, subniitted for publication.
- 5 U. Koelle, *J. Organomet. Chem.*, 1978, 152, 225; W. Bunder and E. Weiss, *ihid.,* 1976, **92,** 65; G. Huttner, **B.** Krieg, and W. Gartzke, *Chern. Ber.,* 1972, **105,** 3424.
-
- 6 (a) D. Astruc, J.-R. Hamon, G. Althoff, E. Román, P. Batail, P. Michaud, J.-P. Mariot, F. Varret, and D. Cozak, *J. Am. Chem. Soc.,* 1979, **101,** 5545; (b) J.-R. Hamon, D. Astruc, and P. Michaud, *ibid.,* 1981, **103,** 758; (c) M. V. Rajasekharan, S. Giezinski, J. H. Ammeter, N. Ostwald, P. Michaud, J.-R. Hamon, and D. Astruc, */bid.,* 1982, **104,** 2400.
- 7 (a) G. Wilkinson, P. L. Pauson, J. M. Birmingham, and F. A. Cotton, *J. Am. Chem. Soc.*, 1953, 75, 1011; (b) W. Pfab and **E.** 0. Fischer, *Z. Anorg. Allg. Chem.,* 1953, **274,** 316; *(c,* J. L. Robbins, N. Edelstein, B. Spencer, and J. C. Smart, *J. Am. Chem. Sue.,* 1982, **104,** 1882; (d) **J.** D. L. Hollowny, **W.** L. Bowden, and W. **E.** Geiger, Jr., *ibid.,* 1977, **99,** 7089.
- 8 (a) E. O. Fischer and F. Röhrscheid, Z. Naturforsch., Teil B, 1962, **17,** 483; (b) H. Brintzinger, G. Palmer, and R. H. Sands, *J. Am. Cheni. Soc.,* 1966, **88,** 63; (c) **S.** R. Webcr and H. H. Brintzinger, *J. Organomet. Chem.*, 1977, 127, 45; (d) D. M. Braitsch and R. Kumarappan, *ihid.,* 1975, **84,** C37.
- 9 Mössbauer data have been reported for $[Fe(\eta^{6}-1, 3, 5-C_6H_3-1, 1.5)$ $Me₃)₂]²⁺$ [BPh₁⁻]₂: R. A. Stukan, N. A. Volkenau, A. N. Nesnieyanov, and V. Goldanskii, *Izv. Atcad. Noilk. SSSR, Ser-. Khim.,* 1966, **8,** 1472; W. H. Morrison, **E.** *Y.* Ho, and D. N. Hendrickson, *Inorg. Chem.,* 1975, **14,** 500.
- **10** F. Varret, *J. Phys.* C, 1976, **6,** 437.
- 11 G. Huttner and S. Lange, Acta Crystallogr., Sect. B, 1972, **28,** 2049.
- 12 R. **L.** Collins, *J. Chem. Phys.,* 1965, **42,** 1072; N. N. Greenwood and T. C. Gibb, 'Mössbauer Spectroscopy,' Chapman and Hall, London, 1971.
- 13 J.-P. Mariot, P. Michaud, **S.** Laucr, A. Trautuein, F. Varret, and D. Astruc, unpublished results.
- 14 J. H. Ammeter, *J. Magn. Reson.*, 1978, 30, 299.